
Heat conduction in a rock mass 
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Vast subterranean caverns may be used for hot water storage in district heating 
schemes; such caverns can be annular, with a central pillar. This paper considers 
the quasi-steady solution of the heat conduction equation for this geometry with 
periodic temperature variations 
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Research into seasonal heat storage is attracting great 
interest in Sweden today. Surplus heat from industry or 
solar heat can be stored advantageously in large water- 
filled rock caverns (100000-500000m3). Relative heat 
losses are small if the volume is great and construction 
costs for rock caverns are relatively small. 

If the total volume of the cavern is large, it may be 
necessary, for construction reasons, to build several 
separate caverns or an annular cavern with a 'pillar' left at 
its centre. The latter concept was used for the Lyckebo hot 
water store outside the city of Uppsala, Sweden, where an 
area including 550 apartments, shops, public buildings, 
schools etc, will be heated during the winter using the 
water heated during the summer by solar collectors. The 
shape and dimensions of the store are shown in Fig 1. 

The design of an annular hot water store has several 
interesting facets. One is that the pillar contributes to 
storage performance in a more pronounced way than the 
rest of the surrounding rock. It is, therefore, of interest to 
study the interaction between the heat stored in the water 
in the cavern, the heat stored in the pillar, and the heat 
stored in the surrounding rock. 

The operation of a seasonal hot water store implies 
that the temperature varies between two limits well above 
the undisturbed ground temperature. The consequence of 
this is that the net heat loss is proportional to the 
difference between the average temperature of the water in 
the store and the temperature of the undisturbed ground, 
to the length scale of the cavern and to the heat 
conduction coefficient of the rock. Initially when the 
heating of the water starts, the rock will consume 
considerable heat and the net losses will be great. 

Theoretically, quasi-steady state will be reached 
after infinite time but, from a practical point of view, one 
can say that 3 years after the moment when the heating 
starts the 'pillar' has almost the average temperature of 
the water. Considering the heat flux to infinity, one can 
say that it takes 5 years for the average heat loss to 
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Fig 1 Hot water storage system at Lyckebo, Sweden 

decrease to twice the steady value. These simple esti- 
mations are easily found from the solutions given by 
Carslaw and Jaeger 1. 

The aim of this paper is to study theoretically the 
quasi-steady solution of the heat conduction equation for 
periodic temperature variations. In the general case this is 
identical to an exterior Helmholtz problem. Such a 
theoretical investigation makes it possible to calculate the 
heat flow between the rock and the water in the cavern. 
This is of great interest since the heat flow always 
counteracts the loading and unloading of the store. It also 
makes it possible to calculate the temperature in the pillar, 
especially its damping and phase lag to the temperature in 
the storage. This latter study is most interesting since the 
temperature induces stresses and deformations in the 
pillar and it is not a priori evident that the pillar carries a 
pressure load thus supporting the over-burden. 

The following analysis is based upon a number of 
simplifications and assumptions. We assume that the 
convection of heat with the ground water can be neglec- 
ted. We also assume that the density and heat capacity of 
the rock are constants and that the heat conduction 
coefficient is isotropic and constant. Finally we assume 
that the cavern is a torus with cylindrical symmetry. The 
cavern is assumed to be located well below the ground, 
implying that the presence of a free ground surface can be 
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neglected. The first assumptions, dealing with the rock 
properties, are reasonable; for economic reasons the 
cavern has been located in very good quality rock. The 
shape of the cavern is not perfectly symmetrical but the 
deviation is small. The last assumption, that the ground 
surface has no influence, is the most questionable since the 
distance between the top and bottom of the cavern is 
equal to the distance between the top of the cavern and the 
ground surface. This difficulty can of course be avoided by 
the use of the method of image, a calculation planned but 
not yet performed. 

Non-dimensional equations 
Consider a region exterior to a torus ~ symmetric with 
respect to the z-axis, with the boundary 0Q. Let the inner 
radius of 0Q be the characteristic length a of the problem 
(Fig 2). At 0f~ the temperature T is prescribed To@(t, r) 
where the constant T o is the characteristic temperature of 
the problem, and ~(t, r) is a given function of [0, ~ )  x 0~. 
The temperature is assumed to vanish at infinity. The 
initial temperature is zero. The region consists of a rock 
whose heat conduction is 2, heat capacity c and density p. 
These parameters can be combined giving the diffusivity 
~c =2~pc. Thus with cylindrical coordinates: 

OT [02T lOT 02TX~ 

~=s:~,~-r2 +r~-r +~-z2 ) in Ra\~ 

T(r,z , t)= To~(t,r ) on0Q t~>0 

T(r,z,t)=O r2 + z2---*oO t > 0  

T(r,z,t)=O in Ra\fl t < 0  

(1) 

(2) 

(3) 

(4) 
A general solution is not easily found. It has recently been 
shown by Brander and Rehbinder 2 that the solution can 
be expressed with the T-matrix representation used in 
scattering theory. As mentioned in the introduction our 
aim is to solve the limiting problem ~b(t, r) = exp(kot) when 
t--~o~. Introducing the following variables: 

u = Te-i"~/TO (5) 

= r/a (6) 

0 ~  
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Fig 2 The torus 

~=z/a (7) 

z = Kt/a 2 (8) 

g= b/a (9) 

fi=h/a (10) 

~ =  toaZ/K (11) 

k--=e3"i/4~ 1/2 (12) 

the heat conduction problem above is then reduced to a 
boundary value problem for the Helmholtz equation. The 
parameters a, b and h can be varied to study their effect on 
U. 

Numerical approximation by particular 
solutions 
In accordance with the discussion above, we will solve the 
Helmholtz problem in cylindrical coordinates: 

02U 1 0b/ 02H 
+ ~ + ~ + k 2 u = 0  in R3\~ 03) 

0~ 

u = 1 on OQ (14) 

lira R iku R ~ b~ -  =0 = , / ~  +~2 (15) 

Notation 

a / i  
a 

b 
g 
C 
Gj(z) 
h 
fi 
Hi(z) 
j ,l cn, 
n,p,q 
Kv, Iv 
Mv, Nv 
r 
F I 

S' 

T 

Multipole coefficients 
Inner radius of the torus 
Outer radius of the torus 
Dimensionless outer radius of the toms, b/a 
Heat capacity of the rock 
Greens' function 
Height of the torus 
Dimensionless height of the torus, h/a 
Harmonic auxiliary function 
Auxiliary parameters (natural numbers) 

Modified Bessel functions 
Amplitudes of Kelvin functions 
Radial coordinate 
(~',0',(') 

Arclength along the circle 7j 
Temperatu re 

To 
t 

U 

Wj  
Z 

0 

"C 

2 
P 
K 
O9 

Or, 
7j 
F 

', ~' 

,v 

Reference temperature 
Time 
Dimensionless amplitude of the temperature 
Auxiliary coordinate 
Axial coordinate 
Dimensionless radial coordinate, r/a 
Azimuthal coordinate 
Dimensionless axial coordinate, z/a 
Integration variables 
Dimensionless time, tK/a 2 
Heat conduction coefficient of the rock 
Density of the rock 
Heat diffusivity of the rock, 2/pc 
Circular frequency 
Dimensionless circular frequency, Om2/K 
Phase of Kelvin function 
Circular curve within the torus 
Cross section curve of the torus 
Region occupied by the torus 
Dimensionless temperature in the torus 
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Fig 3 Torus f~ showing the location of the collocation 
points and the circles 7j 

Eq (15) is the Sommerfeld radiation condition, ensuring 
the unique solvability of Eqs (13)-(15). 

We will seek the solution in the form of a linear 
combination of particular solutions, which satisfy Eqs (13) 
and (15). The linear combination is to be chosen so that Eq 
(14) is approximately satisfied. By using cylindrically 
symmetric particular solutions, we will see that the 
cylindrically symmetric three-dimensional problem on an 
infinite domain is reduced to a one-dimensional approxi- 
mation problem on a curve of finite length. We will also 
indicate how fully three-dimensional problems can be 
treated by this approach. Compared to integral equation 
methods, our approach has the advantage that no 
singular integrals have to be computed. This simplifies 
programming. 

Our numerical method requires some decisions. 
We must: 
1. Choose a subspace of particular solutions and select a 

basis for this subspace; 
2. Choose a finite set of points on the boundary, the 

collocation points where we require the boundary 
conditions to be satisfied. 

In this section, we describe the particular solutions chosen 
and in the next section we discuss the selection of 
collocation points. 

There are still some open theoretical questions 
under investigation on the choices above. In the selections 
described we have been guided by experience gained from 
solving two-dimensional problems (see 'Section rationale' 
below). 

Let 7~,j= l(1)n, be circles in the interior of D and 
symmetric with respect to the (-axis (Fig 3). Let Fand ? be 
vectors with cylindrical coordinates F=(~,0,()  and 
F'= (~',0',('). Then for Fe(Ra\fl)udf~, J = l(1)n; 

/" c ~ l - t  [ e ~ k l i - i ' l \  

- -  - -  d ' uf~(r3=J,#r,,_,~lF_F,i) s l = 1 , 2 , 3 . . .  

(16) 

are particular solutions of Eq (13), independent of 0 and 
satisfyirig Eq (15). We are to determine the coefficients a o 
in: 

,(r~- ~, ~ aOu/](r- ) (17) 
1=1j=1 

Heat conduct ion in a rock mass 

so that the boundary condition (Eq (14)) is approximately 
satisfied. Due to the cylindrical symmetry this is a one- 
dimensional approximation problem. Typical values for 
m and n used in the computation have been 4 ~< m ~< 6 and 
4 ~<n ~<7. Explicit expressions for some u o are given in the 
appendix. Note that the kernels are smooth and that the 
integrals can be computed conveniently by the trape- 
zoidal rule. The following remarks provide some ba- 
ckground to the selection of m, n and 7~. 

Selection rationale 
Our motivation for selecting n, the number of circles Yi, 
greater than l is that for oblong cross sections this gives 
considerably higher accuracy than computation with 
n = 1. On the other hand if we seek a linear combination of 
ul~, j =  l(1)n, m =  l, where the circles yj come close, the 
resulting linear system is severely ill-conditioned. The 
numerical condition improves if we replace close circles 
by one circle on which we allow multipoles, ie we reduce n 
and increase m. Since neither the placement of circles nor 
the choice of m is critical for the computation, these 
guidelines suffice to achieve high enough accuracy for 
many applications. An estimate of the error in the 
computed solution of Eqs (13)-(15) can be obtained by 
computing the deviation of the determined linear com- 
bination (Eq (16)) from 1 on ~Q. Also, when the Laplace 
equation is to be solved in exterior regions, choices 
analogous to those of n, m and Yi have to be made. For  
two-dimensional problems for the Laplace equation, the 
influence of these selections on the rate of convergence 
and numerical conditioning has been analysed 
elsewhere 5. 

Note also that, for problems with no cylindrical 
symmetry, the particular solutions urj are replaced by 
function: 

_ ~3 l-I //eiklf- r,I "~ 

j =  l(1)n, l=  1,2,3 . . . .  (18) 

where Fj are points distributed in the interior of f~. 

Least squares col locat ion 

We introduce the curve F defined as the intersection 
between 0f~ and the half plane 0 = 0. We also allocate a 
number, ranging between 2mn and 3mn, of collocation 
points F~ on F and require if(r-) to satisfy the boundary 
condition (Eq (14)) at all Fj in the least-squares sense. The 
largest number of points was used in cases when the 
thickness of fl  was relatively small. That the system of 
linear equations is over constrained makes the com- 
putation less sensitive to the distribution of collocation 
points than if an mn x mn system were to be solved. 
Nevertheless, the allocation of collocation points is 
important and we will therefore describe the distribution 
principles. The allocation method is a simplified version of 
a strategy previously used for two-dimensional problems 
for the Laplace operator (discussed below). Putting 
monopoles of unit density over each circle Yi yields the 
potential: 

r .91 
j=x J , , IF - r  I 
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Let ri be the exterior unit normal to I in the plane 8=0. 
Then h/an < 0 and : 

2n 
s 
r l?lgds = - 47c i 2n(radius of rj) 

j= 1 

Let : 

m = 
- Ifldn 

4x i radiusofyj) 
j=l 

(20) 

be the density function for the collocation points on I. To 
compute s,,(?), we approximate h/an by a trigonometric 
polynomial, which we integrate and normalize to obtain 
the distribution function s;l(q. Then p collocation points 
{ fj}f are determined by solving the equations: 

'd(Fj)=i-l j=1,2,3 ,..., p 
P 

(22) 

For fully three-dimensional problems Eq (19) is to be 
replaced by : 

(23) 

where the sum is over all distinct points lP On aR one 
allocates collocation points so that if they were point 
charges of equal charge they would produce a potential in 
R3\R which approximates the potential obtained from Eq 
(23). The accuracy requirement is not high. 

To motivate Eqs (19)+23) we conclude this section 
with an outline of the allocation of collocation points for 
two-dimensional problems for the Laplace equation. 
More details have been given elsewhere4T5. Let R, be an 
open bounded, simply connected region in the plane, 
which we identify with the complex plane C. Let f be a 
continuous real-valued function on X& and consider the 
Dirichlet problem: 

Au=0 in d\Q, 

u=f on aQZ, (24) 
u bounded at infinity 

Let wj, j= l(l)n, be distinct points in sZz. An approximate 
solution to Eq (23) is sought in the form: 

~=a,+ i Re F af,(Z-Wj)-l (25) 
j= 1 ( I=1 1 

where a,& and alj&. To determine the coefficients one 
needs at least 2nm + 1 collocation points z,. To describe a 
suitable allocation of the z, we introduce Green’s fun- 
ctions G,(z) for the Laplace operator on Rz with a 
logarithmic singularity at z = wY The G,(z) are uniquely 
determined by : 

Gj(z)=iln 271 &+Hj(z) 

where Hj(z) is harmonic in z2z and: 

1 
Hi(z)= -iln ~ 

2n IZ-Wjl 

on aa,. Let d/an denote the normal derivative into Qz and 

allocate q >2nm + 1 collocation points equidistantly with 
respect to the density function: 

ie require: 

s(zj)=J- j= l(l)q. 
4 

(27) 

This allocation has been studied elsewhere4p5 and certain 
convergence results presented there. A density function 
that is simpler to compute than Eq (27) is obtained by 
neglecting the Hj(a):s in Eq (26). The modified density 
function becomes : 

1 
s(z)=i 5 Tin- 

27cn j=l an Iz-wjl’ (29) 

When using this density function more collocation points 
than unknowns should be used. For rotationally sym- 
metric problems (Eq (21) is the analogue of Eq (29). For 
fully three-dimensional problems the analogue of Eq (24) 
is Eq (23). 

Solutions for pure radial flow 
If 6% 1, the solution of Eqs (13H15) in the vicinity of i=O 
is equal to the solutions for pure radial flow. These 
solutions can be found in Carslaw and Jaeger’s textbook’. 
Thus: 

526 Ikl>O 

5<1 (31) 

The modified Bessel functions K, and I, for a complex 
argument are most conveniently expressed3 with the 
modulii M, and N, and phases 0, and 4, of Kelvin’s 
functions. We can then write the solutions in simple form: 

u(() = M”(5*) eiWMCJ3~-&,~J~~~ 
M,(G) 

5<1 

The derivatives of these functions on asZ are: 

(33) 

au C-J at t=6 

au 
0 2 <=I 

Generally R’\R is doubly connected but in this 
case where &X the region R3\R is split in two separate 
regions 5 < 1 and 5 26 which do not interact. The 
solutions given by Eqs (32) and (33) are shown graphically 
in Figs 4-8 together with the numerical solutions for 
t;< co. 

The gradients at the inner and outer boundaries of 
Q given by Eqs (34) and (35) make it possible to study the 
relation between the heat fluxes leaving and returning to 
0. Fig 9 shows the ratio between the heat flux qout going 
outwards through 5 = fiand the heat flux qin going inwards 
through <= 1. We can see that the flux is mainly 
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Fig 5 Absolute value and phase of  the temperature in the 
symmetry plane ( = 0 ;  t3=30, 6 = 2  

O . I  - 

005 I0  ~ I ~ I 

0 r 2 

-',r/2 

-'tr . . . .  h'=O0 

0 I ,2 
C 

Fig 7 Absolute value and phase of the temperature on the 
symmetry line ~ = 0; ~ = 30, 6 = 2 

Int. J. Heat 8 Fluid F low 135 



G. Rehbinder and L. Reichel 

I 

0 .5  

h = o o  

0 I0 20  50 

0 

--rr/2 I 
0.5 

7r 

I I 
0 I0 20 :~0 

Fig 8 Absolute value and phase of the temperature in the 
symmetry point ~ = ~ = 0 as a function of the frequency; 
g=2 

determined by the area of the heated surface. We also see 
that if the frequency is high the fluxes are shifted 180 ° . 

Solu t ion  for  a c i rcular  torus  w i t h  a 
supere l l ip t ic  cross-sect ion 

In a practical case, h'= 6(1) and we wish to calculate u at 
certain points. The most interesting points are those 
where the solution can be compared with that of the 
previous section. 

For  the practical computation we have chosen F 
to be a superellipse such that: 

/ '2~ 4 { 2 { - 5 -  1) 4 
F : t ~ )  + t  ~ = I  (36) 

Let 7j, j = 1,2, 3 be circles in the plane ~ = 0 so that 7~ passes 
through ~ = j +  1, 0=0 ,  7t/2. F and 7j are shown in Fig 3. 
The dashes on F mark the collocation points obtained 
from Eq (21). In our computation we have used the 
following values: 

/7=2 

~= 0.5, I 

03=0, 2, 5, 15, 30 

"~.~ 4 
~r ° 

I I I I L l 

0 2 4 6 

kZ=~ 

b/o: 3 

2 

I 

I I 
8 

¢ 

~ r12 

b/a=3 

o ° , ~ ~ ' A ' 
k 2 to 

Fig 9 Absolute value and phase of the ratio between the 
heat fluxes through the boundaries ~ =B and ~ = 1 as a 
function of the frequency; cylindrical flow 

0~<~<l  ~>~5 C=0 

0~<¢~<2 4 = 0  

We have thus calculated the function u(¢,C; ~,h,b') on the 
symmetry plane ff = 0 and on the symmetry line ~ = 0 for a 
limited number of parameters. We have been particularly 
interested in the influence on the damping and on the 
phase lag of the relative flatness of ~1, ie of ~ and of the 
frequency ~3. We found quite soon that the discrepancy 
between ~= ~ and h~= 1 was surprisingly small. The least 
discrepancy is of course expected at the symmetry point, ie 
at the origin. That is demonstrated in Fig 8. 

As expected, the damping and the phase increase 
with increasing frequency. A general conclusion is that the 
flatness ~ affects the damping more than it affects the 
phase lag. We also see that for nO< ~ the influence of the 
outer region on the inner region is greater than vice versa. 

Discussion 

The computations presented above allow us to draw some 
conclusions concerning the temperature variations in the 
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rock around the hot water storage. The following para- 
meters will be considered: 

To=25 K 

a = 1 8 m  

b=38  m 

h = 3 0 m  

w= 1.6 x 10 - 6  m 2 S -1  

09=2 x 10 - 7  rad s -1 

The average temperature of the water in the store over a 
complete year is 60°C. These data yield: 

/;=2.11 

~=  1.67 

~b = k 2 = 40.5 

Even for seasonal variations of temperature, the dimen- 
sionless frequency is high which implies that the damping 
is great everywhere in the rock except in the immediate 
vicinity of the surface of the cavern. This is extremely 
important since great temperature variations expose the 
rock to fluctuating stresses that might cause fatigue. The 
rock in the vicinity of the cavern is less sensitive to load 
since it is extensively cracked by the blasting that took 
place during the excavation. It is well known that all rock 
caverns and tunnels blasted in sound rock are surrounded 
by a cracked, plastic zone about 1-2 m thick. We thus 
conclude that no great thermally induced fluctuating 
stresses in the rock will occur. 

We also conclude that the rock pillar in the centre 
of the storage carries pressure load since it has an average 
temperature equal to that of the water and since the 
damping of the temperature variations in the pillar is less 
than that outside the cavern. 

We can calculate easily a lower limit of the 
damping by simple analysis for radial flow. Also, we can 
calculate very accurately the phase lag by radial flow. The 
reason for this is that in a practical case the range of 
variation of ~ and ~" does not differ from the values 
calculated above. 

Finally the curves in Fig 9 indicate that the heat 
flux from the water to the surrounding rock compared to 
the corresponding heat flux to the pillar is almost 
exclusively determined by the parameter E. In this case we 
see that the heat that flows between the water and the 
surrounding rock is approximately 4.5 times greater than 
between the water and the pillar. This conclusion is 
altered neither by the fact that the heat flow is three- 
dimensional nor  by the fact that the heat flux from the 
cavern prevents T o from being sustained. 
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Append ix .  F o r m u l a e  fo r  p a r t i c u l a r  
so lu t ions  

We will give explicit formulae for the particular solutions 
of Eq (13). We introduce: 

eikl~- ~'l 
f ( 7 )  = - -  

, / 1 \ 8  

8y(e') ' - '  ( l -  1 ~8k9 8 ' - ' - ' f  

We need to compute the derivatives of g. These com- 
putations are simplified by introducing: 

1 
s C )  = 

and 

v(~') = ~ ' -  ~ cos  ( 0 -  0') 

Then" 

d s  

dv d ~  = - vs3 t 

d~ ~ = 1 

and: 

(A1) 

9(F') = ikvs - vs 2 (A2) 

The formulae (A1) and (A2) lend themselves to computer- 
aided formula manipulation. Some of the derivatives 
obtained this way are: 

8 
~ , ~ ( v s ) = s ( -  v2s 2 + 1) 

0 2 
8~,2-(vs) = 3s2v(sEv 2 - 1) 

8 3 
8~,3 (VS) = 3S 3 ( - -  5S4V 4 + 6S2V 2 --  1) 

" 8  
(VS2)=S2(--2S2V2 + 1) 

~2 
8~,2 (vs 2) = 2s4v(4sv 2 - 3) 
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